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In the last issue of the Brazilian Journal of Cardiovascular Surgery 
(BJCVS) we published the first editorial of this editorial series 
entitled “Operating with Data - Statistics for the Cardiovascular 
Surgeon”. There, we addressed the fundamental concepts 
required for understanding biostatistics[1]. Now, we will discuss 
association and risk, two interconnected and fundamental entities 
within biostatistics. Again, we will not focus on formulas or in the 
mathematical theory, we will rather try to explain, in an easy and 
straightforward manner, the most relevant concepts and how they 
can be applied, making use of with practical examples.

What is an Association?

Although the word association may represent several different 
ways in which two things can be connected, sometimes even 
being interchangeably used with the term correlation, herein we 
define association as the way two qualitative variables are related 
to each other. Another way one can see association is as being 
a comparison between the proportions of two or more groups 
(each qualitative variable may present several groups). Indeed, this 
definition is not wrong, but we will opt to use the term comparison, 
as well as correlation, for other kinds of relationships between 
variables, which will be described in the future editorials. 

To make the concept clearer, let’s make use of a practical 
example. In a previous issue of the BJCVS, Dayan et al. analyzed 

EDITORIAL

Gabriel Romero Liguori1, MD; Luiz Felipe Pinho Moreira1, MD, PhD

Operating with Data - Statistics for the 
Cardiovascular Surgeon: Part II. Association 
and Risk

DOI: 10.21470/1678-9741-2018-0247

1Laboratório de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), 
Instituto do Coração (InCor), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, 
Universidade de São Paulo, São Paulo, SP, Brazil.

the outcomes of coronary artery bypass graft (CABG) with and 
without aortic cross-clamp (AXC)[2]. One of the dependent 
variables analyzed by the authors was the need for postoperative 
prolonged ventilatory support (PVS). Among the 1145 patients 
undergoing CABG, 988 were submitted to AXC and 157 were not. 
For those submitted to AXC, 489 required PVS, while this number 
was 43 for the group without AXC.

One way to represent these findings is simply presenting 
them as percentages. In the group submitted to AXC, 489/988 
i.e. 49.5% required PVS, while in the group without AXC only 
43/157 i.e. 27.4% needed it. However, another way to represent 
these findings is to use a contingency table, also known as a 
cross-tabulation or crosstab. A contingency table represents one 
variable as the rows (usually the independent variable) and the 
other variable as the columns (usually the dependent variable). In 
our example, the independent variable is the surgical treatment 
and the dependent variable is the outcome i.e. PVS (Table 1). An 
important observation is that not always the rows and columns will 
represent independent and dependent variables since other types 
of associations, for instance between two diagnostic methods, 
can be analyzed and one variable is not interfering in the other. 

Contingency tables can be created with variables containing 
many groups, not only two as in the example. In case you submitted 
the patients to three different surgical procedures or in case the 

Table	1. Contingency table (cross tabulation or crosstab).

Dependent variable

TotalPVS No PVS

Independent variable
CABG with AXC 489 499 988

CABG without AXC 43 114 157

Total 532 613 1145

https://paperpile.com/c/E1OGCM/Qg6a
https://paperpile.com/c/E1OGCM/7SJK
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intervention can generate three different outcomes (e.g. alive 
without sequelae, alive with sequelae, and dead), it would be 
necessary to use, respectively, a 3X2 and a 2X3 table. Although 
most tests can statistically analyze tables despite of their sizes, some 
essential measures of risk can only be calculated for 2X2 tables, 
also known as fourfold tables. In this regard, a contingency table is 
not merely a way to represent the data; it is also a tool to calculate 
a series of statistical tests and measurements of clinical interest. 

Tests of Association

As for most other kinds of relationship between two sets of 
data, or two variables, the choice of the statistical test to be used 
for associations will depend on two main factors: the size and 
distribution of the sample and the pairing of the data.

Chi-Squared Test (χ2)

The chi-squared test (χ2) of association is a statistical test 
that compares the observed frequency (O) to the expected 
frequency (E) if the proportions for each variable remained the 
same independently of the other variable. The expected frequency 
is calculated by multiplying the total frequency of the row and 
column of a determined cell of the table and dividing this value by 
the total number of subjects in the study. Taking into consideration 
Table 1, which represents the actual frequency of observations in 
our example, the expected frequencies are represented in Table 2. 

By comparing Table 1 (the observed frequencies) and Table 
2 (the expected frequencies), the χ2 test of association will give 
a p-value which is based on the degrees of freedom of the data, 
determined by the numbers of rows and columns. The details 
regarding the way this calculation is performed will not be covered 
in this editorial, but the test can be automatically performed by 
virtually any statistical package and even free online tools[3]. In 
our example, the P-value of the χ2 test is <0.0001, representing 
a statistically significant association between the independent 
and the dependent variables i.e. the independent variable does 
affect the dependent variable. The χ2 test of association indicate 
if there are unexpected differences, thus association, considering 
the whole table; it does not, however, indicate where these 
differences are located and the statistical significance for each of 
them. To determine the cells which are presenting lower or higher 
values than expected, as well as the strength of these differences, 
it is necessary to calculate the residuals, which are standardized 
and adjusted values following the normal distribution. The 
calculation of residuals is also not the scope of this editorial, but 

many statistical software include it together with the χ2 test of 
association. Herein, to better fit clinical purposes, we will focus on 
the measures of risk derived from the relationship between the 
two variables, instead of taking into consideration each isolated 
cell of the contingency table.

The χ2 test of association is an easy and practical statistical test 
to be used when samples are large, present a normal distribution 
and observations are not paired. However, when these criteria are 
not met, other statistical tests must be used.

Yates’ Continuity Correction

Before proceeding to the other statistical tests for association, 
it may be interesting to point out a modification to the χ2 test 
suggested by Frank Yates, an English statistician, in 1934[4]. The 
traditional χ2 test of association assumes a continuous probability 
distribution to approximate discrete probabilities; this assumption 
can lead to error. In order to reduce this error, Yates suggested 
a correction consisting of subtracting 0.5 from the difference 
between each observed and respective expected value before 
running the χ2 test. Although the use of the Yates’ continuity 
correction is a theme of discussion, most authors agree that it 
should always be used for 2X2 contingency tables. For tables 
with more than two rows and two columns, however, it should 
not be used. You do not need to make the extra calculations to 
perform the χ2 test of association with Yates’ continuity correction, 
most statistical software already offer this possibility among the 
available tests for association.   

Fisher’s Exact Test

The Fisher’s exact test is a test of association indicated to cases 
in which the sample is non-parametric i.e. does not follow the 
normal distribution or if the sample size is small so that the value 
in each cell is even smaller. The concept of small sample size is 
complex, subjective and relative, but we suggest you consider to 
use the Fisher’s exact test when the number of subjects is smaller 
than 100, if the expected frequencies for each cell is smaller than 
5 in 20% or more of them, or if the observed frequency in any cell 
is zero. In fact, it is never wrong to use the Fisher’s exact test for 
unpaired data, even in situations where the χ2 test can be used.

The concept behind the Fisher’s exact test is to determine 
all the possible combinations of values that result in the same 
marginal totals as the table of observed frequencies and, then, 
to calculate the probability that the actual observed values were 
found among all the possibilities. Although it is not necessary to 

Table	2. Expected frequencies. 

Dependent variable
Total

PVS No PVS

Independent variable CABG with AXC (532×988)÷1145 = 459 (613×988)÷1145 = 529 988

CABG without AXC (532×157)÷1145 = 73 (613×157)÷1145 = 84 157

Total 532 613 1145

https://paperpile.com/c/E1OGCM/jJLz
https://paperpile.com/c/E1OGCM/G8FK
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know the formula to perform the Fisher’s exact test, considering 
that you use statistical software, it can be elucidative to understand 
how the exact probability is achieved. The fact that this test gives 
the exact probability of the observed values to be found among 
all the possible combinations is the reason it is called an exact test. 
Applying the calculation to our example in Table 1, we will also 
find a two-tailed P-value <0.0001 due to the large sample size of 
the study. For small samples, however, Fisher’s exact test tends 
to exhibit slightly different p-values than those found by the χ2 
test of association, but it is always more precise. 

McNemar’s Test

Until now, we discussed the use of tests of association in the 
context of a dependent and independent variables, thus using 
unpaired data. However, tests of association can also be used 
to compare two variables found in the same individuals, as for 
instance when comparing two diagnostic methods. Here, again, 
let’s use an example to make the concept clearer. Greupner et al.[5] 
compared the use of 64-row computed tomography (CT) with 
magnetic resonance imaging (MRI) to evaluate left ventricular 
function. They submitted 36 patients to both exams and observed 
the frequencies described in Table 3 for wall motion deficit. 

n this situation, once that the same patient is being evaluated 
by two techniques, the data is paired and both the χ2 test 
of association and the Fisher’s exact test do not take pairing 
in consideration. Then, the appropriate test to be used is the 
McNemar’s test. This test uses the frequencies of the discordant 
pairs (+/- and -/+) to calculate a χ2 value, which can be compared 
to the χ2 distribution for one degree of freedom to obtain the 
P-value. The formula used to calculate the χ2 value is very simple, 
still, it is not necessary to know it if you use a statistical software 
(what we strongly recommend!) or even, as mentioned previously, 
a free an online tool[3]. n our example, the two-tailed P-value is 
0.4227, showing that there is no statistically significant difference 
between the methods used to evaluate left ventricular function. 
One important observation is that, differently from the χ2 test of 
association and the Fisher’s exact test, McNemar’s test can only 
be performed in 2X2 contingency tables. Another observation is 
that the sum of discordant pairs in the sample should be at least 
10 to allow McNemar’s test to be performed. 

Sign Test

The last test of association we will discuss in this editorial is the 
Sign test. This test is a very simple non-parametric paired test to 
compare situations in which the data can be expressed as a plus or 

a minus sign (what justify its name), representing an increase or a 
decrease of the dependent variable, not taking into consideration 
the magnitude of this variation. It can be considered as a simplified 
alternative to comparison tests for numeric variables, which will be 
discussed in the next editorial. Still, if a variable can be described as 
a quantitative value, one should always prefer to use a comparison 
test for numeric variables (e.g. paired t-test, Wilcoxon signed-rank 
test) over the Sign test, which should be reserved for situations in 
which the quantification of the variable is difficult or not possible. 

Again, making use of an example to facilitate the 
comprehension, suppose you are investigating the effect of an 
analgesic drug in patients undergoing cardiovascular surgery: you 
include in your sample 50 patients and, after administering the 
drug, you find that of those, 30 patients reported improving in pain, 
5 patients did not observe any difference, and 15 patients reported 
worsening in pain. In this case, you can consider you have 30 plus 
signs and 15 minus signs; the zeros must be discarded in the Sign 
test and, thus, your sample size is now 45. Having the number of 
plus and minus signs and the size of the sample, it is possible to 
calculate the p-value for this association. This calculation includes 
the use of a standard binomial test to compare the observed data 
to the binomial distribution. The details for this calculation will not 
be described here. Most statistical packages offer the possibility 
to calculate the Sign test, but, again, free online tools are also 
available to be used[3]. In our example, the two-tailed P-value is 
0.0357, meaning that the administration of the drug is significantly 
associated with improvement in pain. 

Assessing Risk

So, now you know which test to choose and how to find 
statistically significant associations between two qualitative 
variables. The tests described above, however, can only tell if there 
is an association, but cannot quantify or point to the direction of 
it - except for the Sign test. To make that we use measures of risk. 
Measures of risk represent the probability of occurrence of an 
event or outcome and it can appear in two forms: risk and odds. 

Risk, Odds, Relative Risk, and Odds Ratio

Risk, itself, is defined as the likelihood to develop an outcome 
if exposed to a risk factor. Mathematically, it is the ratio of the 
exposed subjects who present the outcome over all the exposed 
subjects. Another term often used to refer to risk is odds. Odds 
is the ratio between the probability of the subject exposed to 
a risk factor to develop an outcome and the probability of not 
developing it. It can be calculated by simply dividing the number 

Table	3. Wall motion deficit as diagnosed by two diagnostic methods.

MRI

Totalpositive negative

CT
positive 18 5 23

negative 9 4 13

Total 27 9 36

https://paperpile.com/c/E1OGCM/GRaK
https://paperpile.com/c/E1OGCM/jJLz
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of exposed subjects who developed the outcome by the number 
of exposed subjects who did not develop the outcome. Although 
these two measures of risk may seem similar and, sometimes, are 
even used interchangeably, there are considerable differences 
which will impact on the appropriate use of them.

Let’s use our first example to illustrate the use of risk and odds. 
Taking into consideration the patients submitted to CABG with 
and without AXC and the need for PVS, it is possible to calculate 
the risk and the odds of needing PVS after each type of procedure 
(Table 4). It is possible to observe how different risk and odds can 
be, particularly for frequent events. In fact, the rarest is an event, 
the most similar is the risk and odds for that event. So, if odds is 
not always representative of risk, why would one use it? We will 
discuss that in a moment, but before, we must introduce two 
measures frequently used to compare risks: the relative risk and 
the odds ratio. 

The relative risk (RR) is the ratio between two risks, the risk of 
the intervention or experimental treatment (the exposed group) 
over the risk of the control (the group not exposed). The odds 
ratio (OR), in turn, works exactly in the same ways, but, instead of 
being the ratio of the risks, is the ratio of the odds. For both the 
RR and the OR, if the ratio is below 1, it means the risk/odds is 
lower in the exposed group, if the ratio is greater than 1, the risk/
odds is higher in the exposed group. Logically, if the ratio is exactly 
1, there is no difference in the chance to develop the outcome 
between the exposed and not exposed groups. When we work 
with statistics, however, we can never trust in a single and exact 
number whether it is the mean, the median, or even a ratio as 
RR and OR. We should always work with confidence intervals. 
Thus, what we actually do to affirm if there is or there is not a 
difference (be it a reduction or an increase) between the risks of 
two different treatments is to define the confidence interval (CI, 
usually the 95% confidence interval) of the RR or OR - what can 
be easily done using a statistical software - and, if the value 1 is 
included within this interval, we consider there is no difference 
between the groups. If the value 1 is not in the interval, we can 
say that the RR or OR of the exposed group is lower (if the CI is 

Table	5. Relative risk and odds ratio.

PVS No PVS n Risk Odds Relative risk (RR) Odds ratio (OR)

CABG with AXC 489 499 988 0.49 0.98 0.27÷0.49 = 0.55
(95%CI: 0.43-0.72)

0.38÷0.98 = 0.39
(95%CI :0.27-0.56)CABG without AXC 43 114 157 0.27 0.38

Table	4. Risk and odds. 

PVS No PVS n Risk Odds

CABG with AXC 489 499 988 489÷988 = 0.49 489÷499 = 0.98

CABG without AXC 43 114 157 43÷157 = 0.27 43÷114 = 0.38

below 1) or higher (if the CI is above 1) than the not exposed group. 
In Table 5, you can observe that the RR of PVS in the group 

without AXC (this is the experimental group in the study) versus 
the group with AXC (the control) is 0.55 i.e. 55% (95%CI: 0.43-0.72). 
This means that by not using AXC there is a 45% (100% minus 55%) 
decrease in the risk of developing PVS. The OR, in turn, is 0.39 i.e. 
39% (95%CI: 0.27-0.56), meaning CABG without AXC reduces the 
odds of developing PVS by 61% compared to traditional surgery 
with AXC. It is interesting to note that the OR, compared to the 
RR, is a measure that exaggerates the strength of the association 
between the dependent and independent variables i.e. the risk 
factor and the outcome. When RR is 1 OR is also 1, but the farther 
the RR is from 1, the farthest is the OR from 1 so that after some 
degree of increase or decrease in the RR, both measures are 
too different to be used interchangeably, as it is the case in our 
example. In fact, the use of OR should be preferably reserved to 
those outcomes with a frequency in the sample of less than 10%.

Now that it is clear what is and how to calculate the RR 
and the OR, let’s go back to that question: If odds is not always 
representative of risk, why would one use it? The answer is that, 
for calculating risk, you need to know the total number of subjects 
exposed to the risk factor, while for calculating odds you just 
need to know the number of subjects who developed or not the 
outcome. In case-control studies, the total number of exposed 
subjects is not available, because you select them based on the 
occurrence of the outcome and not on the exposure to the risk 
factor. Differently, in our example, patients were selected based on 
the exposure to two types of procedure (CABG with and without 
AXC) and then the frequency of events (PVS) was calculated so that 
you know the total number of exposed subjects. If we selected a 
sample of patients who developed PVS as “case” and those who 
did not develop PVS as “control” among patients undergoing 
CABG, we would be arbitrarily dictating the number of subjects 
with and without PVS and therefore the RR, which would not 
be representative of the RR for the whole population. This is the 
reason the OR must be used for case-control studies because the 
RR cannot be calculated for this type of methodological approach.
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