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The concept of critical reading of research articles is widely 
accepted as essential for the practice of Medicine. It is known that 
the use of evidence-based practices can lead to better care and 
outcomes, thus, it is fundamental that the medical doctor is able 
to critically appraise the available literature. If the surgeon who 
reads us aims not only to learn from literature but also to perform 
research him or herself, it is even more important to be very 
well informed about the methods involved in scientific studies. 

Among the several topics embraced within the scientific 
method, probably the most discussed and less understood is 
statistical analysis. For this reason, we created this editorial series 
entitled “Operating with Data - Statistics for the Cardiovascular 
Surgeon”. The series will merit five editorials, each one 
describing a different aspect of statistical analysis relevant for 
the cardiovascular surgeon, as follows:

•	 Part I. Fundamentals of Biostatistics
•	 Part II. Association and Risk
•	 Part III. Comparing Groups
•	 Part IV. Correlations and Regression
•	 Part V. Survival Analysis
In this first editorial, we will address the fundamental 

concepts required for understanding Biostatistics. 

Types of Variables in Statistics and Research

An important initial concept everyone should understand 
is that “data”, as a term originated from the Latin language, is 
the plural form of “datum”, which, in turn, meant “something 
given”. So, “datum” is the minimal amount of information one 
can describe. This “datum” could be translated as a single value 
of a determined variable (e.g. a single measurement of the blood 
glucose) and it can assume different interrelation with other 
“datum”, as well as diverse ways to be described. In this regard, 
according to how the “datum” behaves, the variable represented 
by it can be classified in different manners. 
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The first manner to classify a variable is describing it as 
independent or dependent. Independent variables are those 
which their data are not modified by any other data. An example 
of an independent variable is the study group. Once determined 
by the researcher, the study group cannot be modified by any 
other data. The opposite of an independent variable, naturally, is 
a dependent variable, described as the one that can be modified 
by other variables - in this case, the independent variables. An 
example of dependent variable could be the mortality rate of a 
treatment. The mortality rate does not modify other parameters 
but is modified by, for instance, the study group. So, in a scenario 
in which the researcher is willing to understand if three different 
surgical techniques - A, B, and C - result in different mortality rates, 
the study group i.e. the surgical technique is the independent 
variable and the mortality rate is the dependent one. A variable 
can assume both independent or dependent behavior, but 
they can never coexist in the same analysis. Let’s say we use 
blood glucose as a variable. If we are willing to understand how 
blood glucose influence, for instance, the infection rates after 
cardiovascular procedures, blood glucose is an independent 
variable. On the other hand, if we want to evaluate the effects 
of different diets on blood glucose, blood glucose behaves as 
a dependent variable. 

The second manner to classify a variable is according to 
how it can be described. This classification includes two main 
groups, four subgroups, and one subtype (Figure 1). The first 
group belongs to the qualitative variables. These variables are 
those which are not numeric, but represent categories; for this 
reason, they can also be called categorical variables. Qualitative 
variables can be subdivided into two subgroups, the nominal 
and the ordinal variables. Nominal variables are those in which 
categories do not present a natural order (e.g. blood type). 
Nominal variables present a particular subtype denominated 
binary variables; these variables are those in which there are 



only two possible and opposite categories, like yes/no, present/
absent, live/dead. Ordinal variables, in turn, are those in which 
a natural order exists within the categories [e.g. New York Heart 
Association (NYHA) classification of heart failure]. For these 
variables, it is possible to determine which categories come 
before and after each other. The second group of variables is 
represented by the quantitative variables. Quantitative variables 
embrace data that can be objectively measured and represented 
by numbers, like dimensions, concentrations, time, etc.; for 
this reason, they can also be called numeric variables. These 
variables can also be divided into two subgroups, the discrete 
and the continuous variables. Discrete variables are defined 
as those which data can only be represented by integers (e.g. 
number of surgeries). Continuous variables, however, allow data 
to be expressed as any number within the set of real numbers, 
including numbers with decimal places (e.g. hemoglobin count). 
For practical purposes, quantitative variables can be converted 
into qualitative variables, more specifically into ordinal or binary 
variables. Let’s say, for instance, that we have a dataset with the 
age of a series of patients. We could use these numeric values as 
they are, but, maybe, for a particular study, what really matters 
is a potential difference between children, adult, and elderly 
patients. Thus, we could convert the numeric values of age into 
categorical values, separating them into three groups: children 
(0-18 years), adult (>18-65 years), and elderly (>65 years); this 
case represents the conversion of a discrete variable into an 
ordinal variable. Another interesting example can be described 
by the categorization of blood glucose levels. Here, instead of 
using the exact value given by the blood glucose test, we could 
separate them into two categories: non-diabetic (<126 mg/dL) 
and diabetic (≥126 mg/dL); this case represents the conversion 
of a continuous variable into a binary variable.

The Ways Quantitative Data Can Be Distributed

Quantitative variables can be described according to the 
distribution of their data. This distribution can be better understood 
if we consider an XY graph in which the X-axis represents the 
different values a variable can assume, and the Y-axis represents 
the number (or percentage) of times the values in X-axis appear 

within the whole sample. Although data can be distributed in 
virtually any manner, there are two most common ways for it to 
happen. The first is what is called normal distribution, also known 
as symmetric or Gaussian distribution (Figure 2A). In this kind of 
distribution, the representation of the frequency of each value in 
the sample results in a bell-shaped curve in the XY graph explained 
above, with the peak of the curve representing the mean and the 
median - concepts which will be explained later in this editorial - 
simultaneously and equal distributions being found to the left and 
right sides of this peak, as mirror images. The normal distribution 
is the rule for most of the biological variables. The second type 
of data distribution is the skewed distribution, also referred to as 
asymmetrical distribution. This kind of distribution is found when 
data is clustered toward one end of the distribution curve and 
there is no value in the X-axis that can divide the curve into two 
equal parts. Indeed, in the skewed distribution, the mean and the 
median of the data do not coincide and none of them are at the 
peak of the curve. The skewed distribution can be found in two 
different forms, the negative-skewed distribution (or left-skewed 
distribution) and the positive-skewed distribution (or right-skewed 
distribution). In the negative-skewed distribution, data is clustered 
in the right side of the graph and the skew i.e. the long tail is to the 
left, resulting in mean and median being moved to the left side 
of the peak, with the mean being left to the median (Figure 2B). 
Exactly the opposite is found in the positive-skewed distribution: 
data is clustered in the left side of the graph and the skew is to 
the right, resulting in mean and median being moved to the right 
side of the peak, with the mean being right to the median (Figure 
2C). Although exceptions exist, and some rare skewed distributions 
can show the mean in the opposite side of what is expected[1], for 
practical purposes the rules described above are valid for virtually 
any variable in medical research. Although most variables can be 
considered as normal distributed, several situations may lead to 
a skewed distribution of biological variables, thus every dataset 
must be analyzed individually. To reveal if your data is normally 
distributed or not, it is possible to use specific statistical tests. The 
two most commonly used are the Shapiro-Wilk test, indicated to 
samples smaller than 50 subjects, and the Kolmogorov-Smirnov 
test, for samples greater than 50 subjects. 
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Fig.	1	- Types of variables in statistics and research. For practical purposes, quantitative variables can be converted into qualitative variables.

https://paperpile.com/c/xzRWZp/XCvK1


Qualitative Variables

Qualitative variables are generally described as the proportion 
- usually the percentage - of subjects within each category of the 
sample. This simple calculation will result in a single value (e.g. 
50%); however, it is possible to determine a confidence interval 
for that value using the sample size (n) and the critical value of 
the standard normal distribution. The concepts of confidence 
interval and critical value of the standard normal distribution will 
be discussed in the next section of this editorial, but for now it 
is only necessary to know that the confidence interval is a range 
of values in which there is a specified probability that the value 
of the studied variable lies within and that the critical value of 
the standard normal distribution for a 95% confidence interval 
(CI 95) is 1.96. Thus, the CI 95 of a proportion (p) can be defined 
by the following formula:

The graphical representation of qualitative variables can 
be done with several different graphs that allow showing 
proportion, but two of them are the most commonly used. The 
first of them is the pie chart, in which proportions are displayed 
as “slices of a pie”. This kind of graph should be saved for variables 
containing few categories and large sample sizes, otherwise 
they can become confusing and/or misleading. The second 
type of graph commonly used to represent proportions is the 
bar chart, in which the values for each category are represented 
by the height or length of bars with equal width. The bar chart 
can be combined with the confidence interval of the proportion 
(as described above) to constitute a more robust graphical 
representation. 

Quantitative Variables

Quantitative variables are mathematically represented by a 
measure of central tendency followed by a measure of statistical 
dispersion. 

Measures of central tendency are values that can represent 
the data within a single number. The most commonly used 
measures of central tendency in medical research are the 
arithmetic mean, or simply mean, and the median. The mean is 
the sum of the values of all observations divided by the number 
of observations. The median, in turn, is the value separating 
the higher half of a sample from the lower half, i.e. the value 
at the exact middle of the set of values. When the sample is 
composed of an even number of observations, the median is 
the mean of the two central values. Mean and median present, 
both, advantages and disadvantages. While mean allows broad 
possibilities of algebraic treatment (and consequently statistical 
analysis), it is affected by extreme values i.e. outliers that can 
distort results. The median, on the other hand, is a more robust 
measure, not being affected by aberration values, and is also 
an easy to understand measure - 50% of the sample is below 
it and 50% is above it. However, median does no account for 

Fig.	2	- The ways quantitative data can be distributed. A. Normal 
distribution. B. Negative-skewed distribution. C. Positive-skewed 
distribution.
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How to Present your Data

Once one knows what the kind of variables are and what 
is the distribution of the data that will be analyzed, it becomes 
easy to know how this data must be presented. 
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all observations and, thus, presents limited possibilities for 
algebraic treatment.

The measures of central tendency are always followed by a 
measure of statistical dispersion, which, in turn, represent how 
the sample is distributed around the measure of central tendency. 
The sample could be, for instance, clustered around the mean or 
median, but could also be spread far from them. The two most 
important measures of statistical dispersion for medical research 
are the standard deviation (SD) and interquartile range (IQR). SD 
is mathematically defined as the square root of the variance of a 
given dataset. For practical purposes, however, what is important 
to understand is that the value of the SD represents a range of 
values in which a determined percentage of the sample lies 
within it, in a normally distributed dataset. For this reason, SD is 
always used together with the mean - not the median. The rule 
is that, if you take the values lying between -1SD and +1SD from 
the mean, you will have 68% of the sample; if you take between 
-2SD and +2SD, you will have 95% of the sample; and if you take 
between -3SD and +3SD, you will have 99% of the sample (Figure 
3A). This is the reason why a 95% CI is defined within the 2SD (in 
fact, 1.96SD) limits; these limits are the 95% critical value of the 
standard normal distribution (this is the origin of the formula 
to calculate the CI 95 of a proportion, as stated previously). For 
skewed curves, however, the mean and SD cannot infer the same 
patterns as those found in the normal distributions and, thus, the 
median and IQR are necessarily used. The IQR is calculated as the 
difference between the 75th and the 25th percentiles. Differently 
from SD, IQR cannot give more information than what is already 
known to calculate it i.e. the range of values that embrace 50% of 
the observations in the middle of the sample. IQR can be used, 
however, to construct the box plot charts employed for the 
representation of non-normal distributions (Figure 3B). 

The graphical representation of quantitative variables can 
be done in several ways, but it will majorly depend on the 
distribution of the data. For normally distributed samples, the 
most commonly used graph is the column chart with error bars 
in which the top of the column is the mean and the error bars 

represent the SD or standard error of the mean (SEM), which is 
the SD divided by the square root of the sample size (the lower 
the SEM, the more representative the sample). While SD describes 
the dispersion of the measured values, SEM represents the range 
within there is a probability of 68% to include the real value of 
the mean of the study population. For non-normal distributions, 
in turn, the most frequently chosen method of representation is 
the box and whisker plot. This chart represents 1) the median, 2) 
the IQR and 3) either the total range of the values (minimum and 
maximum) or the 1.5 IQR range with outliers. The use of 1.5 IQR 
range with outliers was proposed by the mathematician John 
W. Tukey[2], in the 1970’s and, since then, has been widely used 
for the representation of non-normal distributions; still, the use 
of 1.5 IQR as the limit for outliers was chosen by convenience. 
Box and whisker plots can also be used for normally distributed 
data, although the opposite - to use column charts with error 
bars for non-normally distributed data - is not appropriate (Figure 
4). Besides these two graphical representation methods, many 
other exists both for normal and non-normal distributions, but 
the ones explained in this editorial are the most used. 

(In)famous Statistical Entities in Medical Research

Probably the most famous entity in medical research 
statistics is the P-value. But what does it mean? The P-value 
is a value ranging from 0 to 1 i.e. 0% to 100% that will tell 
what is the probability that a difference (or an association, 
a correlation, etc.) was found due to chance. This - finding a 
difference when it does not exist - is called type I error. Usually, 
in the medical literature, we can find the use of a predefined 
threshold for P-value named level of significance (α). Most of 
the time, this level of significance is arbitrary defined as 0.05 
(or 5%) and is set as the limit above which the result of a test 
cannot be considered as true. However, in many situations, we 
will find P-values considered to be marginal i.e. they are close 
to the 0.05 cutoff. For this reason, we - and the reviewers and 
editors from other journals[3,4] - advocate that authors always 
report the exact P-value so that the readers can draw their own 

Fig.	3	- The measures of central tendency and dispersion. A. Mean and standard deviation (SD) in a normally distributed sample. B. Median 
and interquartile range (IQR) in a non-normally distributed sample.
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conclusions. Some people might accept a 10% probability of 
error, while others might prefer to be right 99% of the time.  An 
alternative to the use of P-values is the use of CI. Ideally, both 
should be reported together. The CI limits a range in which there 
is a determined percentage of certainty that the true value of 
the population lies within; in the medical literature, it is most 
commonly used the 95% CI, that coincides with the 5% level 
of significance. It is important to notice that the CI is not the 
range that contains a determined percentage of the values.

Another frequently discussed entity in medical research 
statistics is the sample size. It is easily understandable that small 
samples present a limited capacity for estimating the findings 
of the real population, as well as that large samples have a 
high precision to perform these estimations. But what is the 
minimum sample size required to find results which can be 
extrapolated to the real population? To calculate sample size, 
a series of factors must be observed in advance. First, what is 
the minimum difference considered to be clinically relevant? 
Second, what is the pattern of dispersion of this variable - how 
broad is the SD/IQR? Third, what are the expected losses in 
follow-up? Fourth, what is the statistical test to be performed 
for analyzing differences for this variable? And fifth, what are the 
limits for type I and type II errors we are willing to accept. Type 
I error was defined above. The type II error is the opposite i.e. 
not finding a difference when it does exist. While type I error is 
defined as α i.e. the level of significance, type II error is defined 
as β. Calculating 1-β you will find what is defined as the power 
of the test i.e. the probability of correctly inferring a difference. 
A level of confidence of 5% (α=0.05) and a power of 80-90% 
(0.1<β<0.2) are the standard values used for calculating sample 
size. The exact calculation of the sample size, as explained 
above, will depend on the statistical tested to be used. For this 
reason, further detailed discussion on sample size calculation 
for each kind of test will be carried in the next editorials. 

A Few Concepts to Choose the Right Statistical Test

After understanding the types of variables, the ways data 
can be distributed and how we can present our findings, it is 
fundamental, now, to learn about statistical tests - how they 
work and when to choose each of them. Before that, however, 
and to close this editorial on the fundamentals of Biostatistics, 
we will present a few concepts necessary for choosing the 
right statistical tests.

The first fundamental concept in this regard is the difference 
between parametric and non-parametric tests. Parametric tests 
are the ones that assume specific parameters i.e. distributions 
for the sample. Parametric tests assume that the sample 
distribution is normal, and all the calculations are based on 
this assumption. Some famous examples of parametric tests 
are the t-tests, the analysis of variance (ANOVA), and the 
Pearson coefficient of correlation. Non-parametric tests, in turn, 
are those that do not assume any specific distribution of the 
sample. These tests use other means (e.g. ranking) to calculate 
probabilities. Besides non-normal distributions, non-parametric 
tests are also indicated for small sample sizes. Examples of 
non-parametric tests are Wilcoxon tests, the Kruskal-Wallis 
test, and the Spearman’s rank correlation. Since parametric 
tests are based on normal distributions, they use the mean as 
a measure of central tendency, while non-parametric tests use 
the median. In conclusion, parametric tests should be used for 
normally distributed samples and non-parametric tests for non-
normally distributed samples. Still, the use of non-parametric 
tests for normally distributed samples is possible, but the 
opposite - using parametric tests for non-normally distributed 
samples - is not appropriate.  

The second concept which is important to understand 
when choosing a statistical test is the difference between paired 
and unpaired data. Paired data are data which are somehow 
related. Usually, paired data refers to measurements taken 
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Fig.	4	- Graphical representation of quantitative variables. The same datasets are represented with bar chart and box and whisker plot. While 
column chart is strongly affected by an outlier, the box and whisker plot remains essentially the same.



before and after a given procedure (e.g. measuring transvalvular 
pressure gradient before and after valvuloplasty). However, data 
can be considered paired also in other situations, for instance 
when comparing an intervention in a specific anatomic structure 
with its contralateral equivalent [e.g. implanting an experimental 
tissue-engineered blood vessel in the left carotid artery and a 
control polytetrafluoroethylene (PTFE) tube in the right carotid 
artery of the same animal]. Other more extreme examples of 
paired data are studies using twins, husband/wives, brothers/
sisters, and matched cases. Still, properly matching cases - for 
example by sex, age, body mass index (BMI), etc - is difficult and 
perfect matches rarely can be achieved. Unpaired data, in turn, 
are those which there is no link between the subjects submitted 
to the measurement of the variable. The importance to define 
if a dataset is composed of paired or unpaired data is because 
paired tests are considered more powerful to identify differences 
related to the intervention. In these cases, the variability of the 
sample is bypassed by using each subject is his/her own control.
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Understanding when data is normal or non-normal 
distributed i.e. requires parametric or non-parametric tests, and 
if data is paired or unpaired is the basic requirement to know 
which statistical test to choose. The detailed discussion on which 
test to use for each type of research question will come in the 
next editorials.
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